Dependence of thermal conductivity on structural parameters in porous samples
نویسندگان
چکیده
منابع مشابه
Thermal conductivity in porous silicon nanowire arrays
The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For Si...
متن کاملTemperature dependence of thermal conductivity in 1D nonlinear lattices
We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the meanfree-path of the effective phonon i...
متن کاملPermeability and effective thermal conductivity of bisized porous media
In the region of minimum porosity of particulate binary mixtures, heat exchange and permeability were found to be higher than the ones obtained with a mono-size packing built with the same small size particles used in the binary packing. This effect was noticed in the range of the particles size ratio 0.1–1.0. The obtained improvement on thermal performance is related to the increase of effecti...
متن کاملAnomalous size dependence of the thermal conductivity of graphene ribbons.
We investigated the thermal conductivity K of graphene ribbons and graphite slabs as the function of their lateral dimensions. Our theoretical model considered the anharmonic three-phonon processes to the second-order and included the angle-dependent phonon scattering from the ribbon edges. It was found that the long mean free path of the long-wavelength acoustic phonons in graphene can lead to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2012
ISSN: 2158-3226
DOI: 10.1063/1.3676435